A Short Review on the Bioactive Constituents from Six *Terminalia* Species

Mohammad Musarraf Hussain

Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University
Dhaka-1100, Bangladesh

(Received: August 18, 2020; Accepted: December 30, 2020; Published (web): January 28, 2021)

Abstract

Terminalia as a genus has received a great attraction to evaluate and examine the pharmacological potential having their medicinal properties. Different species under *Terminalia* genus have been used as herbal medicine with various formulations in the treatment of abdominal pain, cancer, cough, conjunctivitis, diarrhea, heart problem, leproscopy, urinary tract infection, and sexual related diseases. These properties have been reported to express abundant biological characteristics for example antioxidant, antiparasitic, antibacterial, antifungal, antiviral, and anti-inflammatory. This review has constructed to solicit the phytochemicals from the genus *Terminalia*. A total six species belongs to this genus such as *Terminalia chebula*, *T. citrina*, *T. phanerophlebia*, *T. belerica*, *T. catappa*, and *T. arjuna* have been studied and fifty-six phytochemicals with their chemical structures have been reported in this review. *Terminalia chebula* consists of a higher number of phytochemicals as compared to the other species.

Key words: *Terminalia*, Phytochemicals, Tannins, Glucosides, Pyranosides, Triterpenoids, Phenolic compounds.

Introduction

Nature is a significant resource for medicinal plants. The medicinal plants along with elucidated chemical compounds having pharmacological activities are using as traditional medicinal agents in the prevention and management of different diseases for many years (Hussain 2020, 2019a, 2019b, 2018). These medicinal plants having varied curative properties like anti-microbial, anticancer, anti-inflammatory, anti-plasmodial, and anti-oxidant potentials (Hussain et al., 2016, 2011, 2010; Billah et al., 2013; Ismail et al., 2010). *Terminalia* is a second prevalent genus under the family of Combretaceae having 200 species and is distributed in tropical countries especially in Southeast Asia (Fahmy et al., 2015). *T. chebula* is a medium tree, which can go up to 30.0 m in height, with a trunk having diameter up to 1.0 m. This plant also has traditional use as medicine to treat liver and kidney dysfunction. Dried fruit is also used in Ayurveda as cardiotonic, antitussive, diuretic, homeostatic, laxative, and diuretic (Tawaril et al., 2017).

Reported bio-active constituents

A total six medicinal plants from *Terminalia* genus for example *Terminalia chebula*, *T. citrina*, *T. phanerophlebia*, *T. belerica*, *T. catappa*, and *T. arjuna*, were reviewed and fifty-six (1-56; Figures 1-6) phytoconstituents have been reported along with their chemical structures in this article.

Tannins: Several tannins having hepatitis C inhibitory potentials were isolated from *Terminalia chebula*, which are chebumeinin A (1) and B (2), chebulic acid (3), casuarinin (4), pentagalloyl glucose (5), 5-O-galloylshikimic acid (6), ethyl
gallate (7), gallic acid (8), corilagin (9), chebulagic acid (10), ellagic acid (11), tetra-galloyl-β-D-glucose (12), chebulinic acid (13), and penta-O-galloyl-β-D-glucose (14) (Figure 1) (Ajala et al., 2014; Mahajan et al., 2010; Saleem et al., 2002; Lee et al., 2007; Han et al., 2006).

Figure 1. Tannins from *Terminalia chebula*

Glucosides: Six glucosides and one glucosidic ester bearing antiestrogenic and antimicrobial property were elucidated from *Terminalia citrine* and *Terminalia phanerophlebia*; for example, terminaloside-L (15), terminaloside-M (16), terminaloside-N (17), terminaloside-O (18).
terminaloside-P (19), methyl-3,4,5-trihydroxybenzoate (20), and 1,6-di-o-coumaroyl glucopyranoside (21). Among all the isolated glucosidic compounds from *Terminalia* genus, compound 21 was reported to be a lead molecule for the discovery of medicinal agents targeting tuberculosis (Figure 2) (Muhit *et al.*, 2016; Madikizela *et al.*, 2014).

Figure 2. Glucosides from *Terminalia citrina* (15-19) and *Terminalia phanerophlebia* (20, 21)

Pyranoside: Antiplatelet and antioxidant potency containing one pyranoside, benzoyl-β-D-(4’→10′geranilanoxy)-pyranoside (22), has been reported from *Terminalia belerica* (Figure 3) (Ansari *et al.*, 2016).

Figure 3. Pyranoside from *Terminalia belerica*
Triterpenoids: The reported triterpenoids from the medicinal plant, *Terminalia chebula* are 28-O-β-D-glycopyranosyl ester (23), 23-O-4′-epi-neochebuloylarjungenin (24), arjunogenin (25), arjunic acid (26), 23-O-gallylarjuncic acid (27), arjunglucoside I (28), arjunglucoside II (29), quercotriter-penoside I (30), terminolic acid (31), 28-O-β-D-glucopyranosyl-23-O-galloylterminolate (32), arjunolic acid (33), 23-O-gallocyanuronic acid (34), 28-O-β-D-glucopyranosyl-23-O-gallylarjuncic acid (35), arjunetin (36), crataegoside (37), 28-O-β-D-glucopyranosyl-pinaenoate (38), and 28-O-β-D-glucopyranosyl-23-O-gallylpinaenoate (39) (Figure 4) (Lee et al., 2017).

![Figure 4. Triterpenoids from Terminalia chebula](image)

33. \(R_1 = \text{OH}, R_2 = \text{NO}_2, R_3 = H, R_4 = \text{OH}, R_5 = \beta\text{-D-Glucose} \)
34. \(R_1 = \text{OH}, R_2 = \text{NO}_2, R_3 = H, R_4 = \text{OH}, R_5 = H \)
35. \(R_1 = \text{OH}, R_2 = \text{OH}, R_3 = \text{H}, R_4 = \text{OH}, R_5 = H \)
36. \(R_1 = \text{OH}, R_2 = \text{H}, R_3 = \text{OH}, R_4 = \text{H}, R_5 = \text{OH} \)
37. \(R_1 = \text{OH}, R_2 = \text{H}, R_3 = \text{OH}, R_4 = \text{H}, R_5 = \text{OH} \)
38. \(R_1 = \text{OH}, R_2 = \text{H}, R_3 = \text{OH}, R_4 = \text{OH}, R_5 = \text{OH} \)
39. \(R_1 = \text{OH}, R_2 = \text{H}, R_3 = \text{OH}, R_4 = \text{OH}, R_5 = \text{OH} \)

Acidic compounds: Five acidic and two other compounds (i.e., carboxyl and α-glucosidic compounds) such as 2-pentadecane (40), vanillic acid (or, 4-hydroxy-3-methoxybenzoic acid) (41), syringic acid (or, 4-hydroxy-3,5-dimethoxybenzoic acid) (42), ferulic acid (or, (E)-3-(4-hydroxy-3-methoxyphenyl)acrylic acid) (43), p-coumaric acid (or, (E)-3-(4-hydroxyphenyl)acrylic acid) (44), 3,4,4'-tri-O-methyl-ellagic acid (45), and β-sitosterol-3-O-β-D-glucoside (46) were elucidated from *Terminalia catappa* (Figure 5) (Baratelli et al., 2012; Hussain et al., 2016, 2008).

Miscellaneous compounds

The isolated phytochemicals from *Terminalia arjuna* are triterpenoids, ursane tri-terpene-glucosyl ester, ursane tri-terpene-glycosyl esters and phenolic compounds. Reported compounds under these classes are arjunic acid (47), arjuncvatin (48), arjunogenin (49), 28-O-β-D-glucopyranosyl-2α,3β-dihydroxyurs-12,18-dien-28-oate (50), 28-O-β-D-glucopyranosyl-2α,3β,23-trihydroxyurs-12,18-dien-28-oate (51), quardinose viii (52), kajichigoside f1 (53), 28-O-β-D-glucopyranosyl-2α,3β,23-trihydroxyurs-12,19-dien-28-oate (54), 3-O-methyllellagic acid 4′-O-α-l-rhamnopyranoside (55), and (−)-epicatechin (or, (2R,3R)-2-(3,4-dihydroxyphenyl) chromane-3,5,7-triol) (56) (Figure 6) (Varghesea et al., 2015; Wang et al., 2010; Toumy et al., 2003).

Concluding remarks and future perspective

Extracts from the different plants under the genus *Terminalia* is a good source of phytochemical compounds. A number of reports have revealed ethnomedical potential from the different medicinal plants (Das et al., 2020). Here, a short survey has been performed based on the literature on the genus *Terminalia* which revealed different
Figure 5. Acidic compounds from *Terminalia catappa*

Figure 6. Compounds from *Terminalia arjuna*
phytochemicals such as tannins, glucosides, pyranosides, triterpenoids, and acidic compounds (Fahmy et al., 2015). Six medicinal plants (Terminalia chebula, T. citrina, T. phanerophlebia, T. belerica, T. catappa, and T. arjuna) under the genus Terminalia have been studied and fifty six compounds were reported having varied and distinctive chemical structure various bioactivity and pharmacological properties. The current review presents a short perceptive of the chemistry of various Terminalia species, that can be helpful in the progress and finding of the novel medicinal moieties for the diagnosis and treatment of different health related problems and diseases.

References

